Reconfigurable, Defect-Free, Ultrahigh-Q Photonic Crystal Microcavities for Sensing
نویسندگان
چکیده
We propose a new approach for creating reconfigurable high-Q cavities in defect-free photonic crystal slabs (PCSs). The approach relies on selective air-hole infiltration in otherwise defect-free PCSs. We show that using this method we can design ultrahigh-Q microcavities, with Q~10(6). Numerical calculations indicate a large number of high-Q modes with high sensitivity, which are ideal for simultaneous, multi-parameter refractive index-based sensing.
منابع مشابه
High-Q hybrid 3D-2D slab-3D photonic crystal microcavity.
The radiation loss in the escaping light cone with a two-dimensional (2D) photonic crystal slab microcavity can be suppressed by means of cladding the low-Q slab microcavity by three-dimensional woodpile photonic crystals with the complete bandgap when the resonance frequency is located inside the complete bandgap. It is confirmed that the hybrid microcavity based on a low-Q, single-defect phot...
متن کاملSilicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing.
We experimentally demonstrated photonic crystal microcavity based resonant sensors coupled to photonic crystal waveguides in silicon nano-membrane on insulator for chemical and bio-sensing. Linear L-type microcavities are considered. In contrast to cavities with small mode volumes, but low quality factors for bio-sensing, we showed increasing the length of the microcavity enhances the quality f...
متن کاملSemiconductor Optical Microcavities for Chip-Based Cavity QED
Optical microcavities can be characterized by two key quantities: an effective mode volume Veff, which describes the per photon electric field strength within the cavity, and a quality factor Q, which describes the photon lifetime within the cavity. Cavities with a small Veff and a high Q offer the promise for applications in nonlinear optics, sensing, and cavity quantum electrodynamics (cavity...
متن کاملOptimization of the Q Factor in Photonic Crystal Microcavities
We express the quality factor of a mode in terms of the Fourier transforms of its field components and prove that the reduction in radiation loss can be achieved by suppressing the mode’s wavevector components within the light cone. Although this is intuitively clear, our analytical proof gives us insight into how to achieve the factor optimization, without the mode delocalization. We focus on ...
متن کاملPhotonic crystal molecules: tailoring the coupling strength and sign
We demonstrate a large tuning of the coupling strength in Photonic Crystal molecules without changing the inter-cavity distance. The key element for the design is the “photonic barrier engineering”, where the “potential barrier” is formed by the air-holes in between the two cavities. This consists in changing the hole radius of the central row in the barrier. As a result we show, both numerical...
متن کامل